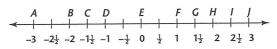
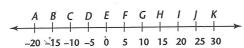

Chapter 1 Supplementary Problems

Tell whether each figure is a point, a line, a line segment, or a ray. Then use symbols to name each figure.




Use the Ruler Postulate to name the real number or letter corresponding to the point named.

7. A 9. H 11. $-1\frac{1}{2}$ 13. 1 8. $-2^{\frac{1}{2}}$ 10. $2\frac{1}{2}$ 12. J 14. E

16. -1

Find the distance between the points.

17. *B* and *E*

19. *E* and *F*

21. *C* and *D*

23. *C* and *E*

25. *A* and *D*

18. *G* and *I*

426

20. *F* and *H*

22. *D* and *F*

24. *B* and *G*

26. *B* and *I*

Chapter 1 Supplementary Problems

Write the letter of the answer to each question.

27. How many points are used to name a line?

A none

B one

C two

28. How many dimensions does a plane have?

A none

B one

C two

29. What geometric term can you use to describe beads on a string?

A points on a ray

B points on a line segment

C points on a line

30. What are points on the same line called?

A collinear points

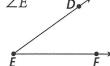
B parallel points

C endpoints

Name each figure in another way.

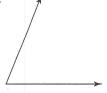
31. *AC*

32. \bar{X}

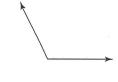


X Y Z

33. \overline{QR}



34.



Copy each angle. Then bisect each angle using a compass and straightedge.

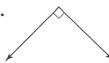
35.

36

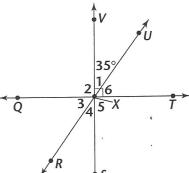
 \mathbb{Z}^{Q}

Chapter 1 Supplementary Problems

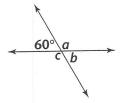
Classify each angle. Write acute, right, obtuse, or straight.


40.
$$m\angle Q = 120^{\circ}$$

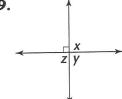
41.
$$m\angle 2 = 180^{\circ}$$


39.

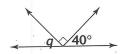
42.



Find the measure of each angle.



Solve for the missing angle(s).


48.

49.

50.

Chapter 2 Supplementary Problems

Copy each statement. Draw one line under the hypothesis. Circle the conclusion.

- 1. If an angle is a right angle, then its measure is 90°.
- 2. If an angle is a straight angle, then its measure is 180°.
- **3.** If a figure is a quadrilateral, then it has 4 sides.
- **4.** If two angles have equal measures, then they are congruent.
- 5. If an animal is an insect, then it has 6 legs.

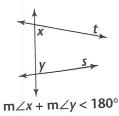
Write the converse of each conditional and tell whether it is true or false.

- **6.** If a figure has three sides, then it is a triangle.
- 7. If two angles are supplementary, then the sum of their measures is 180°.
- **8.** If it is raining, then the sun is not shining.
- **9.** If you are a citizen of the United States, then you must pay taxes.

Decide which postulate allows the construction.

- **10.** Connect the points with line segments to form a rectangle.
- **11.** Draw circle *P* with radius 4.

12. Draw two right angles equal to one another.


Chapter 2 Supplementary Problems

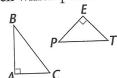
Decide which postulate allows the conclusion to be made.

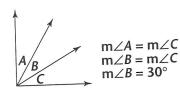
13. $\stackrel{m}{\longleftrightarrow}$

Conclusion: Line m is the only line that passes through point X and is parallel to line ℓ .

14.

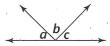
Conclusion: Lines *t* and *s* are intersecting lines.


15.


Conclusion: Circle *X* is shown with a radius of 5 feet.

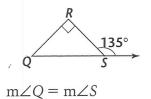
Answer each question. Tell which postulate or axiom you used.

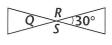
16. Is $m\angle A = m\angle E$?


17. What is the measure of $\angle A$?

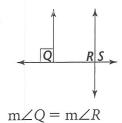
18. Which angles, or sum of angles, have a measure less than 90°?

Chapter 2 Supplementary Problems


19. If $m\angle a + m\angle b = m\angle b + m\angle c$, does $m\angle a = m\angle c$?



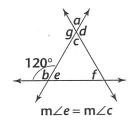
20. If 4x + 16 = 56, does 4x = 40?


Find the measures of angles Q, R, and S.

21.

23.

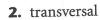
Give a reason for each of the following statements. Use the diagram at the right.


24.
$$m\angle e = m\angle c$$

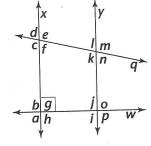
26.
$$m\angle e = 60^{\circ}$$

27.
$$m \angle b - m \angle c = m \angle b - m \angle a$$

29.
$$m \angle c + m \angle d = 180^{\circ}$$


30.
$$m\angle e + m\angle f < 180^{\circ}$$

Chapter 3 Supplementary Problems

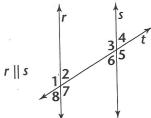

Use the figure to identify lines or angles as described below.

1. parallel line

3. a pair of acute, vertical angles

4. a pair of obtuse, vertical angles

5. intersecting lines


6. a pair of acute, alternate interior angles

Classify each pair of angles. Write alternate interior, alternate exterior, corresponding, or supplementary.

7.
$$\angle 1$$
 and $\angle 2$

8.
$$\angle 3$$
 and $\angle 7$

14.
$$\angle 2$$
 and $\angle 3$

Chapter 3 Supplementary Problems

Find the measure of each angle.

17. ∠2

23. ∠16

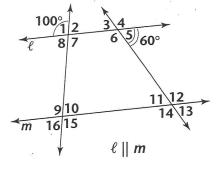
18. ∠9

24. ∠13

19. ∠4

25. ∠8

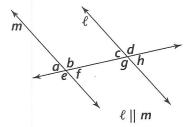
20. ∠6


26. ∠10

21. ∠11

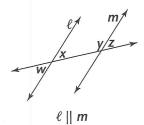
27. ∠3

22. ∠12


28. ∠14

. Q

Use the theorems about parallel lines to find the measure of each angle.


29. The measure of $\angle b$ is twice that of $\angle c$.

m∠*b* = ____

m∠c = ____

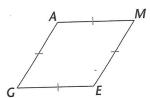
30. The measure of $\angle w$ is $\frac{1}{3}$ that of $\angle y$.

$$m\angle w = \underline{\hspace{1cm}}$$

$$m \angle y = \underline{\hspace{1cm}}$$

Chapter 3 Supplementary Problems

Use definitions and theorems to complete the statements.


31. *GA* || _____

33.
$$\overline{AM} \parallel \underline{\hspace{1cm}}$$

34.
$$m\angle A + m\angle \underline{\hspace{1cm}} = 180^{\circ}$$

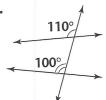
35.
$$m \angle M + m \angle \underline{\hspace{1cm}} = 180^{\circ}$$

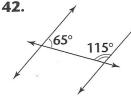
36. m∠E ≅ m∠ _____

Rhombus GAME

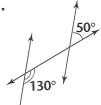
Complete the following constructions on a separate sheet of paper. Use only a straightedge and a compass.

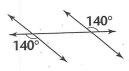
37. a square with a $1\frac{1}{2}$ -inch base

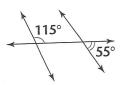

38. a rectangle with 3-in. and 5-in. sides


39. a trapezoid with a right angle, height of 1 in., and bases of 2 in. and 4 in.

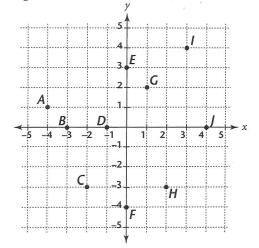
40. a trapezoid with no right angles


Write parallel or not parallel for each pair of lines crossed by a third line.


41.



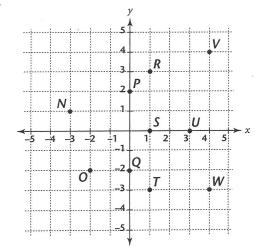
43.



Chapter 4 Supplementary Problems

Name the ordered pair that corresponds to each point.

- **1.** *G*
- **2.** A
- **3.** *C*
- **4.** J
- **5.** F

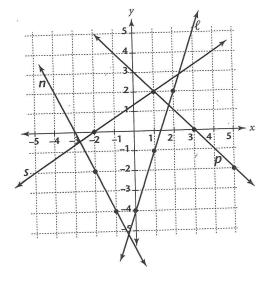

- **6.** *I*
- **7.** D
- **8.** *H*
- **9.** B
- **10.** *E*

 $\mathcal{A}^{\mathcal{Q}}$

Name the point located at each ordered pair.

- **11.** (1, 0)
- **16.** (1, 3)
- **12.** (4, -3)
- **17.** (4, 4)
- **13.** (3, 0)
- **18.** (0, 2)
- **14.** (-3, 1)
- **19.** (1, -3)
- **15.** (-2, -2)
- **20.** (0, -2)

Chapter 4 Supplementary Problems


Find the slope, *m*, of each line.

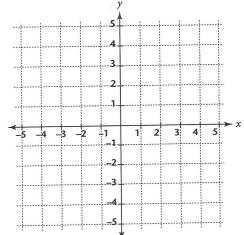
Find the slope, m, of the line that passes through the given points.

29.
$$(-3, -3)$$
 and $(5, 2)$

30.
$$(10, -6)$$
 and $(1, -6)$

Write the equation of the line that passes through each pair of points in problems 25-30 above.

Use the form y = mx + b.


Chapter 4 Supplementary Problems

Find another point on each line using the slope and point given.

- **37.** ℓ ; m = 3; passes through (-2, 4)
- **38.** t; $m = \frac{2}{5}$; passes through (1, -4)
- **39.** r, m = -2; passes through (-1, 3)
- **40.** q; $m = -\frac{3}{4}$; passes through (0, 0)

Make a grid and graph each of the lines described in problems 37–40 above. Connect the points with a line.

- **41.** line ℓ
- **42.** line *t*
- **43.** line *r*
- **44.** line *q*

Use the midpoint formula to find the midpoints of line segments having the following endpoints.

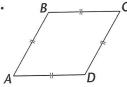
- **45.** (1, 1) and (5, 7)
- **46.** (3,4) and (-1,2)
- **47.** (8, -3) and (-2, 5)
- **48.** (12, 8) and (6, -4)
- **49.** (0, 6) and (4, 0)
- **50.** (1,5) and (-6,7)

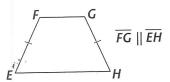
, Q

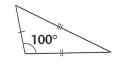
Chapter 5 Supplementary Problems

Name the polygon as precisely as you can.

1


2.


3.

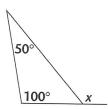

4

5.

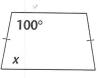
6

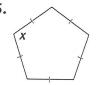
Complete the following constructions on a separate sheet of paper. Use only a straightedge and a compass.

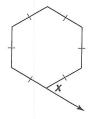
- 7. Construct an equilateral triangle.
- **8.** Draw any scalene triangle and label the angles X, Y, and Z. Construct the altitude from X to \overline{YZ} .
 - **9.** Construct a scalene right triangle.
- **10.** Construct a 30°-60° right triangle.
- **11.** Construct $\triangle LMN$ with LM = LN and $m \angle L > 90^{\circ}$.

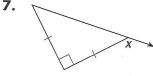

Chapter 5 Supplementary Problems

Find the measure of $\angle x$.

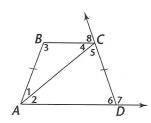

12.


13.


14.


15.

16.



17.

Use the information given to find the angles' measures.

- **18.** m∠2
- **19.** m∠3
- **20.** m∠8
- **21.** m∠5
- **22.** m∠4

ABCD is an isosceles trapezoid $m\angle 7 = 110^{\circ}$ $m\angle 1 = 30^{\circ}$

18

Chapter 5 Supplementary Problems

Answer the questions.

23. What is an altitude?

24. What is the sum of the measures of the interior angles of a regular octagon?

25. What is the measure of each angle in an equilateral triangle?

26. What is the measure of each interior angle of a 9-sided regular polygon?

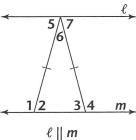
27. How can you find the measure of an exterior angle of a triangle?

28. Is a trapezoid a parallelogram? Why or why not?

29. How can you find the number of triangles formed in a polygon by the diagonals from one vertex?

30. What is a median?

Use the information given to answer the questions.


31. Which angles are congruent to $\angle 2$?

32. If $m\angle 6 = 40^\circ$, what is the sum of $m\angle 5$ and $m\angle 7$?

33. If $m\angle 2 = 70^{\circ}$ and $m\angle 4 = 110^{\circ}$, what is $m\angle 6$?

34. Which angle measure equals the sum of $m \angle 6$ and $m \angle 2$?

35. Are $\angle 1$ and $\angle 4$ exterior angles? Why or why not?

